首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   176938篇
  免费   18576篇
  国内免费   11715篇
工业技术   207229篇
  2024年   392篇
  2023年   2004篇
  2022年   4038篇
  2021年   4696篇
  2020年   5420篇
  2019年   4827篇
  2018年   4452篇
  2017年   5802篇
  2016年   6494篇
  2015年   6783篇
  2014年   10689篇
  2013年   10594篇
  2012年   13491篇
  2011年   13748篇
  2010年   10583篇
  2009年   11013篇
  2008年   10232篇
  2007年   12601篇
  2006年   11189篇
  2005年   9399篇
  2004年   7718篇
  2003年   6749篇
  2002年   5714篇
  2001年   4801篇
  2000年   4219篇
  1999年   3542篇
  1998年   2797篇
  1997年   2448篇
  1996年   1931篇
  1995年   1778篇
  1994年   1495篇
  1993年   1111篇
  1992年   956篇
  1991年   703篇
  1990年   565篇
  1989年   558篇
  1988年   398篇
  1987年   250篇
  1986年   200篇
  1985年   117篇
  1984年   107篇
  1983年   63篇
  1982年   74篇
  1981年   82篇
  1980年   53篇
  1979年   58篇
  1978年   29篇
  1977年   24篇
  1975年   23篇
  1959年   38篇
排序方式: 共有10000条查询结果,搜索用时 62 毫秒
1.
In this study, the separation of hydrogen from gas mixtures using a palladium membrane coupled with a vacuum environment on the permeate side was studied experimentally. The gas mixtures composed of H2, N2, and CO2 were used as the feed. Hydrogen permeation fluxes were measured with membrane operating temperature in the range of 320–380 °C, pressures on the retentate side in the range of 2–5 atm, and vacuum pressures on the permeate side in the range of 15–51 kPa. The Taguchi method was used to design the operating conditions for the experiments based on an orthogonal array. Using the measured H2 permeation fluxes from the Taguchi approach, the stepwise regression analysis was also employed for establishing the prediction models of H2 permeation flux, followed by the analysis of variance (ANOVA) to identify the significance and suitability of operating conditions. Based on both the Taguchi approach and ANOVA, the H2 permeation flux was mostly affected by the gas mixture composition, followed by the retentate side pressure, the vacuum degree, and the membrane temperature. The predicted optimal operating conditions were the gas mixture with 75% H2 and 25% N2, the membrane temperature of 320 °C, the retentate side pressure of 5 atm, and the vacuum degree of 51 kPa. Under these conditions, the H2 permeation flux was 0.185 mol s?1 m?2. A second-order normalized regression model with a relative error of less than 7% was obtained based on the measured H2 permeation flux.  相似文献   
2.
Investigation on the miniaturized parallel multichannel-based devices packed with glass beads to improve the mass exchange execution is the critical focal point of the current study. One of the essential parameters to specify the miniaturized devices' flow distribution is the residence time distribution (RTD). In the present context, the RTDs of a liquid tracer were investigated for the air-water multiphase flows (concurrent) across the multichannel-based miniaturized devices (comprising of 11 similar dimensional parallel channels). The devices were variable in height and packed with glass beads. The conductivity estimations generated the RTD curves and were addressed by the axial dispersion model (ADM). The fluid-flow rates differed within the range of 5–23 ml min−1. The axial dispersion coefficients and the rate of the specific energy dispersion were investigated. The effects of pressure difference and geometry on the hydrodynamic attributes and mixing properties were well-illustrated, and the new correlations were suggested.  相似文献   
3.
Micro-cracks commonly occur on the catalyst layers (CLs) during the manufacturing of catalyst coated membranes (CCMs). However, the crack shape parameters effect on CLs in-plane (IP) electronic conductivity λs is not clear. In this work, the relationship between crack parameters and the λs is obtained based on the two-dimensional (2D) multiple-relaxation time (MRT) lattice Boltzmann method (LBM). The LBM numerical model is validated by the normalized λs experiment applied on three different home-made cracked CLs, and the parameter study focus on crack width, length, quantity and phase angle are carried out. The results show that the decrease of λs has different sensitivity |k| to the parameters above. The crack width has little effect on λs decrease, and the |kw| is 0.038. However, crack arm length and quantity show more significant impact, which |kl| and |kN| are 0.753 and 0.725, respectively. The CLs with different crack propagation directions show significant anisotropy on λs, and a 53.53% decrease in λs is observed between 0° and 90° crack phase angle change. To manufacture a high electronic conductivity CL, crack initiation and migration mitigation are highly encouraged.  相似文献   
4.
为研究低压静电场辅助冷冻对竹笋冻结特性的影响,以冻结曲线、硬度、水分损失率、水分迁移、冰晶形态和组织微观结构为指标,探究低压静电场辅助冷冻(-35 ℃)和普通冷冻(-35 ℃)条件下竹笋品质的变化规律。结果表明:低压静电场辅助冷冻提高了冻结效率,改变了冰晶形态及分布,减轻了组织微观结构破损程度,改善了解冻汁液流失情况。与静电板间距10、20、30、40 cm处的冷冻竹笋解冻后水分损失率分别为14.16%、12.58%、9.73%、10.44%,显著低于对照组(21.01%)(P<0.05),硬度分别为461.19、507.48、496.65 g和455.31 g,显著高于对照组(350.70 g)(P<0.05)。低场核磁共振分析结果表明,在低压静电场辅助冷冻下竹笋解冻后汁液流失减少,扫描电子显微镜观察结果显示,竹笋纤维排列整齐,组织微观结构保持较好。低压静电场辅助冷冻可有效改善竹笋品质,可为利用低压静电场进行果蔬的冷冻贮藏和冷链运输提供参考。  相似文献   
5.
以智能反射面(intelligent reflecting surface,IRS)辅助的无线携能通信(simultaneous wireless information and power transfer,SWIPT)系统为背景,研究了该系统中基于能效优先的多天线发送端有源波束成形与IRS无源波束成形联合设计与优化方法。以最大化接收端的最小能效为优化目标,构造在发送端功率、接收端能量阈值、IRS相移等多约束下的非线性优化问题,用交替方向乘子法(alternating direction method of multipliers,ADMM)求解。采用Dinkelbach算法转化目标函数,通过奇异值分解(singular value decomposition,SVD)和半定松弛(semi-definite relaxation,SDR)得到发送端有源波束成形向量。采用SDR得到IRS相移矩阵与反射波束成形向量。结果表明,该系统显著降低了系统能量收集(energy harvesting,EH)接收端的能量阈值。当系统总电路功耗为?15 dBm时,所提方案的用户能效为300 KB/J。当IRS反射阵源数与发送天线数均为最大值时,系统可达最大能效。  相似文献   
6.
To the best of our knowledge, this is the first time to report the preparation of a dotted nanowire arrayed by 5 nm sized palladium and nickel composite nanoparticles (denoted as PdxNiy NPs) via a hydrothermal method using NU and PdO·H2O as the starting materials. The samples prepared at the mass ratio of NU to PdO·H2O 1:1, 1:2 and 2:1 were, respectively, nominated as catalyst c1, c2 and c3. The chemical compositions of all synthesized catalysts were mainly studied by using X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), revealing that metallic Ni was one main component of all prepared catalysts. Surprisingly, the main diffraction peaks appearing in the XRD patterns of all prepared catalysts were assigned to the metallic Ni rather than the metallic Pd. Very interestingly, as indicated by the TEM images, a large number of dotted nanowires arrayed by numerous equidistant 5 nm sized nanoparticles were distinctly exhibited in catalyst c1. More importantly, when being used as electrocatalysts for EOR, all prepared catalysts exhibited an evident electrocatalytic activity towards EOR. In the cyclic voltammetry (CV) test, the peak current density of the forward peak of EOR on catalyst c1 measured at 50 mV s?1 was as high as 56.1 mA cm?2, being almost 9 times higher than that of EOR on catalyst c3 (6.3 mA cm?2). Particularly, the polarized current density of EOR on catalyst c1 at 3600 s, as indicated by the chronoamperometry (CA) experiment, was still maintained to be around 1.47 mA cm?2, a value higher than the latest reported data of 1.3 mA cm?2 (measured on the pure Pd/C electrode). Presenting a novel method to prepare dotted nanowires arranged by 5 nm sized nanoparticles and showing the significant eletrocatalytic activities of the newly prepared dotted nanowires towards EOR were the major contributions of this preliminary work.  相似文献   
7.
5G系统将移动通信服务从移动电话、移动宽带和大规模机器通信扩展到新的应用领域,即所谓对通信服务有特殊要求的垂直领域。对使能未来工厂的5G能力进行了全面的分析总结,包括弹性网络架构、灵活频谱、超可靠低时延通信、时间敏感网络、安全和定位,而弹性网络架构又包括对网络切片、非公共网络、5G局域网和边缘计算的支持。希望从广度到深度,对相关的理论及技术应用做透彻、全面的梳理,对其挑战做清晰的总结,从而为相关研究和工程技术人员提供借鉴。  相似文献   
8.
《Ceramics International》2022,48(15):21317-21326
1T phase molybdenum disulfide (1T-MoS2) has aroused extensive concern in energy storage devices such as supercapacitors due to its large interlayer spacing, high conductivity and good hydrophilicity. However, it is struggle to synthesize 1T-MoS2 with stable 1T phase with high content. Herein, Ammonium ion intercalation molybdenum disulfide (A-MoS2) with high 1T content and stable 3D microsphere structure was successfully synthesized using a facile hydrothermal method. We explained the feasibility of ammonium ion (NH4+) intercalation through density functional theory (DFT) calculations and proved the successful intercalation of NH4+ by XRD and XPS. Through XPS fitting, the 1T phase content is calculated as high as 83.1%. The as-prepared A-MoS2 presents a stable 3D microsphere structure with the interlayer spacing expanded to 0.93 nm, which provides a wide ion diffusion channel that allows ions to pass through quickly. Moreover, the high 1T content increases the hydrophilicity of MoS2, thereby improving the wettability of the electrode, which contributes to the interaction between the electrolyte and electrode. In 1 M Na2SO4, A-MoS2 electrode material displays high specific capacitance of 228 F g?1 at 5 mV s?1 and retains 127 F g?1 at 80 mV s?1, which proves the good rate capability. Furthermore, the assembled α-MnO2//A-MoS2 asymmetric supercapacitor (ASC) displayed a wide operating voltage of 2.1 V. The assembled ASC displays a high energy density of 35.8 Wh?kg?1 at a power density of 525.0 W kg?1, which indicates excellent energy storage performance.  相似文献   
9.
A appropriate size with three-dimension(3 D) channels for lithium diffusion plays an important role in constructing highperforming LiNi_(0.5)Mn_(1.5)O_4(LNMO) cathode materials, as it can not only reduce the transport path of lithium ions and electrons, but also reduce the side effects and withstand the structural strain in the process of repetitive Li~+ intercalation/deintercalation. In this work, an e fficient method for designing the hollow LNMO microsphere with 3 D channels structure by using polyethylene oxide(PEO) as soft template agent assisted solvothermal method is proposed. Experimental results indicate that PEO can make the reagents mingle evenly and nucleate slowly in the solvothermal process, thus obtaining a homogeneous distribution of carbonate precursors. In the final LNMO products, the hollow 3 D channels structure obtained by the decomposition of PEO and carbonate precursor in the calcination can provide abundant electroactive zones and electron/ion transport paths during the charge/discharge process, which benefits to improve the cycling performance and rate capability. The LNMO prepared by adding 1 g PEO possesses the most outstanding electrochemical performance, which presented an excellent discharge capacity of 143.1 mAh g~(-1) at 0.1 C and with a capacity retention of 92.2% after 100 cycles at 1 C. The superior performance attributed to the 3 D channels structure of hollow microspheres, which provide uninterrupted conductive systems and therefore achieve the stable transfer for electron/ion.  相似文献   
10.
Hook and claw pumps are used for recirculation of excess hydrogen in fuel cells. Optimization of the pump design is essential. Computational Fluid Dynamic (CFD) is an effective method for performance optimization. However, it is difficult to conduct CFD simulation because of the sharp cusp of the rotor profile. Cut cell Cartesian mesh could be the solution to handle this complex and moving geometries. The aim of this paper is to evaluate ANSYS Forte for hook and claw pumps. Firstly, the conservation accuracy of the cut cell cartesian mesh is verified using an adiabatic piston cylinder case. Then, simulation results of hook and claw type pump are compared with experimental data. Finally, simulation results of air and hydrogen are compared. The results show that the CFD simulation of hook and claw pumps using cut cell cartesian mesh could provide an efficient and effective approach for the optimization of the system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号